
Package: DtD (via r-universe)
September 7, 2024

Type Package

Title Distance to Default

Version 0.2.2

Maintainer Benjamin Christoffersen <boennecd@gmail.com>

Description Provides fast methods to work with Merton's distance to
default model introduced in Merton (1974)
<doi:10.1111/j.1540-6261.1974.tb03058.x>. The methods includes
simulation and estimation of the parameters.

License GPL-2

Encoding UTF-8

BugReports https://github.com/boennecd/DtD/issues

LazyData true

LinkingTo Rcpp, RcppArmadillo

Imports Rcpp, checkmate

Suggests knitr, rmarkdown, testthat, microbenchmark

VignetteBuilder knitr

RoxygenNote 7.0.1

SystemRequirements C++11

Repository https://boennecd.r-universe.dev

RemoteUrl https://github.com/boennecd/dtd

RemoteRef HEAD

RemoteSha 806e86a9382083ddf10a06332cd258aac13dbf40

Contents
BS_call . 2
BS_fit . 3
BS_fit_rolling . 4
BS_sim . 6
merton_ll . 7

1

https://doi.org/10.1111/j.1540-6261.1974.tb03058.x
https://github.com/boennecd/DtD/issues

2 BS_call

Index 9

BS_call European Call Option Price and the Inverse

Description

Computes the European call option and the inverse. All vectors with length greater than one needs
to have the same length.

Usage

BS_call(V, D, T., r, vol)

get_underlying(S, D, T., r, vol, tol = 1e-12)

Arguments

V numeric vector or scalar with price of the underlying asset.

D numeric vector or scalar with debt due in T..

T. numeric vector or scalar with time to maturity.

r numeric vector or scalar with risk free rates.

vol numeric vector or scalar with volatilities, σs.

S numeric vector with observed stock prices.

tol numeric scalar with tolerance to get_underlying. The difference is scaled if
the absolute of S is large than tol as in the tolerance argument to all.equal.numeric.

Value

Numeric vector or scalar with price of the underlying asset or equity price.

See Also

BS_fit

Examples

library(DtD)
set.seed(58661382)
sims <- BS_sim(

vol = .2, mu = .03, dt = .1, V_0 = 100, T. = 1, D = rep(80, 20), r = .01)

stopifnot(with(
sims, isTRUE(all.equal(V, get_underlying(S, D, T, r, vol)))))

stopifnot(with(
sims, isTRUE(all.equal(S, BS_call(V, D, T, r, vol)))))

BS_fit 3

BS_fit Fit Black-Scholes Parameters

Description

Function to estimate the volatility, σ, and drift, µ. See vignette("Distance-to-default",
package = "DtD") for details. All vectors with length greater than one needs to have the same
length. The Nelder-Mead method from optim is used when method = "mle". Either time or dt
should be passed.

Usage

BS_fit(
S,
D,
T.,
r,
time,
dt,
vol_start,
method = c("iterative", "mle"),
tol = 1e-12,
eps = 1e-08

)

Arguments

S numeric vector with observed stock prices.
D numeric vector or scalar with debt due in T..
T. numeric vector or scalar with time to maturity.
r numeric vector or scalar with risk free rates.
time numeric vector with the observation times.
dt numeric scalar with time increments between observations.
vol_start numeric scalar with starting value for σ.
method string to specify which estimation method to use.
tol numeric scalar with tolerance to get_underlying. The difference is scaled if

the absolute of S is large than tol as in the tolerance argument to all.equal.numeric.
eps numeric scalar with convergence threshold.

Value

A list with the following components

ests estimates of σ, and drift, µ.
n_iter number of iterations when method = "iterative" and number of log likelihood

evaluations when method = "mle".
success logical for whether the estimation method converged.

4 BS_fit_rolling

Warning

Choosing tol >= eps or roughly equal may make the method alternate between two solutions for
some data sets.

Examples

library(DtD)
set.seed(83486778)
sims <- BS_sim(

vol = .1, mu = .05, dt = .1, V_0 = 100, T. = 1, D = rep(80, 20), r = .01)

with(sims,
BS_fit(S = S, D = D, T. = T, r = r, time = time, method = "mle"))

BS_fit_rolling Fit Black-Scholes Parameters Over Rolling Window

Description

Function to estimate the volatility, σ, and drift, µ. E.g., the window can be over a given number of
months. See vignette("Distance-to-default", package = "DtD") for details.

Usage

BS_fit_rolling(
S,
D,
T.,
r,
time,
dt,
vol_start,
method = c("iterative", "mle"),
tol = 1e-12,
eps = 1e-08,
grp,
width,
min_obs

)

Arguments

S numeric vector with observed stock prices.

D numeric vector or scalar with debt due in T..

T. numeric vector or scalar with time to maturity.

r numeric vector or scalar with risk free rates.

BS_fit_rolling 5

time numeric vector with the observation times.

dt numeric scalar with time increments between observations.

vol_start numeric scalar with starting value for σ.

method string to specify which estimation method to use.

tol numeric scalar with tolerance to get_underlying. The difference is scaled if
the absolute of S is large than tol as in the tolerance argument to all.equal.numeric.

eps numeric scalar with convergence threshold.

grp integer vector with the group identifier (e.g., units of months).

width integer scalar with the units of grp to include in the rolling window.

min_obs integer scalar for the minimum number of observation required in each window.

Value

Matrix with the grp, number of observation in the window, parameter estimates, and 'n_iter' as
in BS_fit, and whether the estimation method was successful.

An error attribute is added in case other code than optim fails. It is a list of lists with the grp index
where the method failed and the output from try.

See Also

BS_fit

Examples

Simulate data
set.seed(55770945)
n <- 21L * 3L * 12L # 21 trading days for 3 years w/ 12 months
sims <- BS_sim(

vol = .1, mu = .05, dt = .1, V_0 = 100, T. = 1,
D = runif(n, 80, 90), r = runif(n, 0, .01))

sims$month <- (1:nrow(sims) - 1L) %/% 21L + 1L

throw out some months
sims <- subset(sims, !month %in% 15:24)

assign parameters
grp <- sims$month
width <- 12L # window w/ 12 month width
min_obs <- 21L * 3L # require 3 months of data

estimate results with R loop which is slightly simpler then the
implementation
grps <- unique(grp)
out <- matrix(

NA_real_, nrow = length(grps), ncol = 6,
dimnames = list(NULL, c("mu", "vol", "n_iter", "success", "n_obs", "grp")))

for(g in grps){
idx <- which(grps == g)

6 BS_sim

keep <- which(grp %in% (g - width + 1L):g)
out[idx, c("n_obs", "grp")] <- c(length(keep), g)
if(length(keep) < min_obs)

next
res <- with(

sims[keep,],
BS_fit(S = S, D = D, T. = T, r = r, time = time, method = "iterative",

vol_start = 1))
out[idx, c("mu", "vol", "n_iter", "success")] <- rep(
do.call(c, res[c("ests", "n_iter", "success")]), each = length(idx))

}

we get the same with the R function
out_func <- with(sims, BS_fit_rolling(

S = S, D = D, T. = T, r = r, time = time, method = "iterative",
grp = month, width = width, min_obs = min_obs))

all.equal(out[, names(out) != "n_iter"],
out_func[, names(out_func) != "n_iter"])

BS_sim Simulate Stock Price and Price of Underlying Asset

Description

At least one of D, r, or T. needs to have the desired length of the simulated series. All vectors with
length greater than one needs to have the same length.

Usage

BS_sim(vol, mu, dt, V_0, D, r, T.)

Arguments

vol numeric scalar with σ value.

mu numeric scalar with µ value.

dt numeric scalar with time increments between observations.

V_0 numeric scalar with starting value of the underlying asset, S0.

D numeric vector or scalar with debt due in T..

r numeric vector or scalar with risk free rates.

T. numeric vector or scalar with time to maturity.

See Also

BS_fit

merton_ll 7

Examples

library(DtD)
set.seed(79156879)
sims <- BS_sim(

vol = .1, mu = .05, dt = .2, V_0 = 100, T. = 1, D = rep(80, 20), r = .01)

plot underlying
plot(sims$V)

plot stock
plot(sims$S)

merton_ll Compute Log-Likelihood of Merton Model

Description

Computes the log-likelihood for a given values of µ and σ.

Usage

merton_ll(S, D, T., r, time, dt, vol, mu, tol = 1e-12)

Arguments

S numeric vector with observed stock prices.

D numeric vector or scalar with debt due in T..

T. numeric vector or scalar with time to maturity.

r numeric vector or scalar with risk free rates.

time numeric vector with the observation times.

dt numeric scalar with time increments between observations.

vol numeric scalar with the σ value.

mu numeric scalar with the µ value.

tol numeric scalar with tolerance to get_underlying. The difference is scaled if
the absolute of S is large than tol as in the tolerance argument to all.equal.numeric.

See Also

BS_fit

8 merton_ll

Examples

we get the same if we call `optim` as follows. The former is faster and is
recommended
set.seed(4648394)
sims <- BS_sim(

vol = .1, mu = .05, dt = .1, V_0 = 100, T. = 1, D = rep(80, 20), r = .01)

r1 <- with(
sims, BS_fit(S = S, D = D, T. = T, r = r, time = time, method = "mle",

eps = 1e-8, vol_start = .2))

r2 <- optim(c(mu = 0, log_vol = log(.2)), function(par)
-with(
sims, merton_ll(S = S, D = D, T. = T, r = r, time = time,

mu = par["mu"], vol = exp(par["log_vol"]))))

all.equal(r1$n_iter, unname(r2$counts[1]))
all.equal(r1$ests[1], r2$par[1])
all.equal(r1$ests[2], exp(r2$par[2]), check.attributes = FALSE)

the log-likelihood integrates to one as it should though likely not the
most stable way to test this
ll <- integrate(

function(x) sapply(x, function(S)
exp(merton_ll(

S = c(1, S), D = .8, T. = 3, r = .01, dt = 1/250, vol = .2,
mu = .05))),

lower = 1e-4, upper = 6)
stopifnot(isTRUE(all.equal(ll$value, 1, tolerance = 1e-5)))

Index

all.equal.numeric, 2, 3, 5, 7

BS_call, 2
BS_fit, 2, 3, 5–7
BS_fit_rolling, 4
BS_sim, 6

get_underlying, 2, 3, 5, 7
get_underlying (BS_call), 2

merton_ll, 7

optim, 3, 5

try, 5

9

	BS_call
	BS_fit
	BS_fit_rolling
	BS_sim
	merton_ll
	Index

