Package: mdgc 0.1.7

mdgc: Missing Data Imputation Using Gaussian Copulas

Provides functions to impute missing values using Gaussian copulas for mixed data types as described by Christoffersen et al. (2021) <arxiv:2102.02642>. The method is related to Hoff (2007) <doi:10.1214/07-AOAS107> and Zhao and Udell (2019) <arxiv:1910.12845> but differs by making a direct approximation of the log marginal likelihood using an extended version of the Fortran code created by Genz and Bretz (2002) <doi:10.1198/106186002394> in addition to also support multinomial variables.

Authors:Benjamin Christoffersen [cre, aut], Alan Genz [cph], Frank Bretz [cph], Torsten Hothorn [cph], R-core [cph], Ross Ihaka [cph]

mdgc_0.1.7.tar.gz
mdgc_0.1.7.zip(r-4.5)mdgc_0.1.7.zip(r-4.4)mdgc_0.1.7.zip(r-4.3)
mdgc_0.1.7.tgz(r-4.4-x86_64)mdgc_0.1.7.tgz(r-4.4-arm64)mdgc_0.1.7.tgz(r-4.3-x86_64)mdgc_0.1.7.tgz(r-4.3-arm64)
mdgc_0.1.7.tar.gz(r-4.5-noble)mdgc_0.1.7.tar.gz(r-4.4-noble)
mdgc.pdf |mdgc.html
mdgc/json (API)
NEWS

# Install 'mdgc' in R:
install.packages('mdgc', repos = c('https://boennecd.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/boennecd/mdgc/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

binarygaussian-copulaimputationmultinomial-variablesordinalsemi-parametric

3.78 score 10 stars 12 scripts 216 downloads 7 exports 31 dependencies

Last updated 2 years agofrom:3e31814702. Checks:OK: 4 NOTE: 5. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-win-x86_64NOTENov 06 2024
R-4.5-linux-x86_64NOTENov 06 2024
R-4.4-win-x86_64NOTENov 06 2024
R-4.4-mac-x86_64NOTENov 06 2024
R-4.4-mac-aarch64NOTENov 06 2024
R-4.3-win-x86_64OKNov 06 2024
R-4.3-mac-x86_64OKNov 06 2024
R-4.3-mac-aarch64OKNov 06 2024

Exports:get_mdgcget_mdgc_log_mlmdgcmdgc_fitmdgc_imputemdgc_log_mlmdgc_start_value

Dependencies:BHbriocallrclicrayondescdiffobjdigestevaluatefsgluejsonlitelatticelifecyclemagrittrMatrixpkgbuildpkgloadpraiseprocessxpspsqnR6RcppRcppArmadilloRcppEigenrlangrprojroottestthatwaldowithr