Title: | Mixed Multivariate Cumulative Incidence Functions |
---|---|
Description: | Fits the mixed cumulative incidence functions model suggested by <doi:10.1093/biostatistics/kxx072> which decomposes within cluster dependence of risk and timing. The estimation method supports computation in parallel using a shared memory C++ implementation. A sandwich estimator of the covariance matrix is available. Natural cubic splines are used to provide a flexible model for the cumulative incidence functions. |
Authors: | Benjamin Christoffersen [cre, aut] , Mark Clements [cph], Alan Genz [cph], Frank Bretz [cph], Torsten Hothorn [cph], R-core [cph] |
Maintainer: | Benjamin Christoffersen <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.1.2 |
Built: | 2024-11-04 03:51:21 UTC |
Source: | https://github.com/boennecd/mmcif |
Computes the log Cholesky decomposition and the inverse of it. The functions are provided as the log Cholesky decomposition is used in the parameterization of the covariance matrix.
log_chol(x) log_chol_inv(x)
log_chol(x) log_chol_inv(x)
x |
A positive definite matrix or a vector with a log Cholesky decomposition. |
A numeric vector with the log Cholesky decomposition or a matrix with the inverse.
set.seed(1) S <- drop(rWishart(1, 10, diag(10))) log_chol(S) stopifnot(isTRUE(all.equal(S, log_chol_inv(log_chol(S)))), (NCOL(S) * (NCOL(S) + 1L)) %/% 2L == length(log_chol(S)))
set.seed(1) S <- drop(rWishart(1, 10, diag(10))) log_chol(S) stopifnot(isTRUE(all.equal(S, log_chol_inv(log_chol(S)))), (NCOL(S) * (NCOL(S) + 1L)) %/% 2L == length(log_chol(S)))
Sets up the R and C++ objects that are needed to evaluate the log composite likelihood. This reduces to a log likelihood when only clusters of size one or two are used.
mmcif_data( formula, data, cause, time, cluster_id, max_time, spline_df = 3L, left_trunc = NULL, ghq_data = NULL, strata = NULL, knots = NULL, boundary_quantiles = c(0.025, 0.975) )
mmcif_data( formula, data, cause, time, cluster_id, max_time, spline_df = 3L, left_trunc = NULL, ghq_data = NULL, strata = NULL, knots = NULL, boundary_quantiles = c(0.025, 0.975) )
formula |
|
data |
|
cause |
an integer vector with the cause of each outcome. If there are
|
time |
a numeric vector with the observed times. |
cluster_id |
an integer vector with the cluster id of each individual. |
max_time |
the maximum time after which there are no observed events. It
is denoted by |
spline_df |
degrees of freedom to use for each spline in the cumulative incidence functions. |
left_trunc |
numeric vector with left-truncation times. |
ghq_data |
the default Gauss-Hermite quadrature nodes and weights to
use. It should be a list with two elements called |
strata |
an integer vector or a factor vector with the strata of each
individual. |
knots |
A list of lists with knots for the splines. The inner lists
needs to have elements called |
boundary_quantiles |
two dimensional numerical vector with boundary
quantile probabilities after which the natural cubic splines for the time
transformations are restricted to be linear. Only relevant if |
An object of class mmcif which is needed for the other functions in the package.
Cederkvist, L., Holst, K. K., Andersen, K. K., & Scheike, T. H. (2019). Modeling the cumulative incidence function of multivariate competing risks data allowing for within-cluster dependence of risk and timing. Biostatistics, Apr 1, 20(2), 199-217.
mmcif_fit
, mmcif_start_values
and
mmcif_sandwich
.
if(require(mets)){ # prepare the data data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # randomly sub-sample set.seed(1) prt_use <- subset( prt_use, id %in% sample(unique(id), length(unique(id)) %/% 10L)) mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country) }
if(require(mets)){ # prepare the data data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # randomly sub-sample set.seed(1) prt_use <- subset( prt_use, id %in% sample(unique(id), length(unique(id)) %/% 10L)) mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country) }
Fits mixed cumulative incidence functions model by maximizing the log composite likelihood function.
mmcif_fit( par, object, n_threads = 1L, control.outer = list(itmax = 100L, method = "nlminb", kkt2.check = FALSE, trace = FALSE), control.optim = list(eval.max = 10000L, iter.max = 10000L), ghq_data = object$ghq_data, ... )
mmcif_fit( par, object, n_threads = 1L, control.outer = list(itmax = 100L, method = "nlminb", kkt2.check = FALSE, trace = FALSE), control.optim = list(eval.max = 10000L, iter.max = 10000L), ghq_data = object$ghq_data, ... )
par |
numeric vector with parameters. This is using a log Cholesky decomposition for the covariance matrix. |
object |
an object from |
n_threads |
the number of threads to use. |
control.outer , control.optim , ...
|
arguments passed to
|
ghq_data |
the Gauss-Hermite quadrature nodes and weights to use.
It should be a list with two elements called |
The output from auglag
.
Cederkvist, L., Holst, K. K., Andersen, K. K., & Scheike, T. H. (2019). Modeling the cumulative incidence function of multivariate competing risks data allowing for within-cluster dependence of risk and timing. Biostatistics, Apr 1, 20(2), 199-217.
mmcif_data
, mmcif_start_values
and
mmcif_sandwich
.
if(require(mets)){ # prepare the data data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # randomly sub-sample set.seed(1) prt_use <- subset( prt_use, id %in% sample(unique(id), length(unique(id)) %/% 10L)) n_threads <- 2L mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country) # get the staring values start_vals <- mmcif_start_values(mmcif_obj, n_threads = n_threads) # estimate the parameters ests <- mmcif_fit(start_vals$upper, mmcif_obj, n_threads = n_threads) # show the estimated covariance matrix of the random effects tail(ests$par, 10L) |> log_chol_inv() |> print() # gradient is ~ zero mmcif_logLik_grad( mmcif_obj, ests$par, is_log_chol = TRUE, n_threads = n_threads) |> print() }
if(require(mets)){ # prepare the data data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # randomly sub-sample set.seed(1) prt_use <- subset( prt_use, id %in% sample(unique(id), length(unique(id)) %/% 10L)) n_threads <- 2L mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country) # get the staring values start_vals <- mmcif_start_values(mmcif_obj, n_threads = n_threads) # estimate the parameters ests <- mmcif_fit(start_vals$upper, mmcif_obj, n_threads = n_threads) # show the estimated covariance matrix of the random effects tail(ests$par, 10L) |> log_chol_inv() |> print() # gradient is ~ zero mmcif_logLik_grad( mmcif_obj, ests$par, is_log_chol = TRUE, n_threads = n_threads) |> print() }
Evaluates the log composite likelihood and its gradient using adaptive Gauss-Hermite quadrature.
mmcif_logLik( object, par, ghq_data = object$ghq_data, n_threads = 1L, is_log_chol = FALSE ) mmcif_logLik_grad( object, par, ghq_data = object$ghq_data, n_threads = 1L, is_log_chol = FALSE )
mmcif_logLik( object, par, ghq_data = object$ghq_data, n_threads = 1L, is_log_chol = FALSE ) mmcif_logLik_grad( object, par, ghq_data = object$ghq_data, n_threads = 1L, is_log_chol = FALSE )
object |
an object from |
par |
numeric vector with parameters. This is either using a log Cholesky decomposition for the covariance matrix or the covariance matrix. |
ghq_data |
the Gauss-Hermite quadrature nodes and weights to
use. It should be a list with two elements called |
n_threads |
the number of threads to use. |
is_log_chol |
logical for whether a log Cholesky decomposition is used for the covariance matrix or the full covariance matrix. |
A numeric vector with either the log composite likelihood or the gradient of it.
if(require(mets)){ # prepare the data data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # randomly sub-sample set.seed(1) prt_use <- subset( prt_use, id %in% sample(unique(id), length(unique(id)) %/% 10L)) n_threads <- 2L mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country) # get the staring values start_vals <- mmcif_start_values(mmcif_obj, n_threads = n_threads) # compute the log composite likelihood and the gradient at the starting # values mmcif_logLik( mmcif_obj, start_vals$upper, is_log_chol = TRUE, n_threads = n_threads) |> print() mmcif_logLik_grad( mmcif_obj, start_vals$upper, is_log_chol = TRUE, n_threads = n_threads) |> print() }
if(require(mets)){ # prepare the data data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # randomly sub-sample set.seed(1) prt_use <- subset( prt_use, id %in% sample(unique(id), length(unique(id)) %/% 10L)) n_threads <- 2L mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country) # get the staring values start_vals <- mmcif_start_values(mmcif_obj, n_threads = n_threads) # compute the log composite likelihood and the gradient at the starting # values mmcif_logLik( mmcif_obj, start_vals$upper, is_log_chol = TRUE, n_threads = n_threads) |> print() mmcif_logLik_grad( mmcif_obj, start_vals$upper, is_log_chol = TRUE, n_threads = n_threads) |> print() }
Computes bivariate figures such as conditional CIFs, survival probabilities, and hazards or bivariate CIFs, densities, and survival probabilities.
mmcif_pd_cond( par, object, newdata, cause, time, left_trunc = NULL, ghq_data = object$ghq_data, strata = NULL, which_cond, type_cond = "derivative", type_obs = "cumulative" ) mmcif_pd_bivariate( par, object, newdata, cause, time, left_trunc = NULL, ghq_data = object$ghq_data, strata = NULL, use_log = FALSE, type = c("cumulative", "cumulative") )
mmcif_pd_cond( par, object, newdata, cause, time, left_trunc = NULL, ghq_data = object$ghq_data, strata = NULL, which_cond, type_cond = "derivative", type_obs = "cumulative" ) mmcif_pd_bivariate( par, object, newdata, cause, time, left_trunc = NULL, ghq_data = object$ghq_data, strata = NULL, use_log = FALSE, type = c("cumulative", "cumulative") )
par |
numeric vector with the model parameters. |
object |
an object from |
newdata |
a |
cause |
an integer vector with the cause of each outcome. If there are
|
time |
a numeric vector with the observed times. |
left_trunc |
numeric vector with left-truncation times. |
ghq_data |
the Gauss-Hermite quadrature nodes and weights to
use. It should be a list with two elements called |
strata |
an integer vector or a factor vector with the strata of each
individual. |
which_cond |
an integer with value one or two for the index of the individual that is being conditioned on. |
type_cond |
a character for the type of outcome that is being
conditioned on.
|
type_obs |
a character the type of conditional measure. It can be
|
use_log |
a logical for whether the returned output should be on the log scale. |
type |
a 2D character vector for the type of measures for each
observation. The elements can be
|
A numeric scalar with the requested quantity.
mmcif_pd_univariate
and mmcif_fit
.
if(require(mets)){ data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # Gauss Hermite quadrature nodes and weights from fastGHQuad::gaussHermiteData ghq_data <- list( node = c(-3.43615911883774, -2.53273167423279, -1.75668364929988, -1.03661082978951, -0.342901327223705, 0.342901327223705, 1.03661082978951, 1.75668364929988, 2.53273167423279, 3.43615911883774), weight = c(7.6404328552326e-06, 0.00134364574678124, 0.0338743944554811, 0.240138611082314, 0.610862633735326,0.610862633735326, 0.240138611082315, 0.033874394455481, 0.00134364574678124, 7.64043285523265e-06)) # setup the object for the computation mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country, ghq_data = ghq_data) # previous estimates par <- c(0.727279974859164, 0.640534073288067, 0.429437766165371, 0.434367104339573, -2.4737847536253, -1.49576564624673, -1.89966050143904, -1.58881346649412, -5.5431198001029, -3.5328359024178, -5.82305147022587, -3.4531896212114, -5.29132887832377, -3.36106297109548, -6.03690322125729, -3.49516746825624, 2.55000711185704, 2.71995985605891, 2.61971498736444, 3.05976391058032, -5.97173564860957, -3.37912051983482, -5.14324860374941, -3.36396780694965, -6.02337246348561, -3.03754644968859, -5.51267338700737, -3.01148582224673, 2.69665543753264, 2.59359057553995, 2.7938341786374, 2.70689750644755, -0.362056555418564, 0.24088005091276, 0.124070380635372, -0.246152029808377, -0.0445628476462479, -0.911485513197845, -0.27911988106887, -0.359648419277058, -0.242711959678559, -6.84897302527358) # the test data we will use test_dat <- data.frame( country = factor(c("Norway", "Norway"), levels(prt_use$country)), status = c(1L, 2L), time = c(60, 75)) # probability that both experience the event prior to the two times mmcif_pd_bivariate( par = par, object = mmcif_obj, newdata = test_dat, cause = status, strata = country, ghq_data = ghq_data, time = time, type = c("cumulative", "cumulative")) |> print() # density that one experiences an event at the point and the other # experiences an event prior to the point mmcif_pd_bivariate( par = par, object = mmcif_obj, newdata = test_dat, cause = status, strata = country, ghq_data = ghq_data, time = time, type = c("derivative", "cumulative")) |> print() # probability that both survive up to the passed points mmcif_pd_bivariate( par = par, object = mmcif_obj, newdata = test_dat, cause = c(3L, 3L), strata = country, ghq_data = ghq_data, time = time, type = c("cumulative", "cumulative")) |> print() # conditional hazard given that the other experiences an event prior to time mmcif_pd_cond( par = par, object = mmcif_obj, newdata = test_dat, cause = status, strata = country, ghq_data = ghq_data, time = time, which_cond = 1L, type_cond = "cumulative", type_obs = "hazard") |> print() # conditional CIF given that the other experiences an event prior to the # time mmcif_pd_cond( par = par, object = mmcif_obj, newdata = test_dat, cause = c(2L, 2L), strata = country, ghq_data = ghq_data, time = time, which_cond = 1L, type_cond = "cumulative", type_obs = "cumulative") |> print() # same but given that the other experiences the event at the point mmcif_pd_cond( par = par, object = mmcif_obj, newdata = test_dat, cause = c(2L, 2L), strata = country, ghq_data = ghq_data, time = time, which_cond = 1L, type_cond = "derivative", type_obs = "cumulative") |> print() }
if(require(mets)){ data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # Gauss Hermite quadrature nodes and weights from fastGHQuad::gaussHermiteData ghq_data <- list( node = c(-3.43615911883774, -2.53273167423279, -1.75668364929988, -1.03661082978951, -0.342901327223705, 0.342901327223705, 1.03661082978951, 1.75668364929988, 2.53273167423279, 3.43615911883774), weight = c(7.6404328552326e-06, 0.00134364574678124, 0.0338743944554811, 0.240138611082314, 0.610862633735326,0.610862633735326, 0.240138611082315, 0.033874394455481, 0.00134364574678124, 7.64043285523265e-06)) # setup the object for the computation mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country, ghq_data = ghq_data) # previous estimates par <- c(0.727279974859164, 0.640534073288067, 0.429437766165371, 0.434367104339573, -2.4737847536253, -1.49576564624673, -1.89966050143904, -1.58881346649412, -5.5431198001029, -3.5328359024178, -5.82305147022587, -3.4531896212114, -5.29132887832377, -3.36106297109548, -6.03690322125729, -3.49516746825624, 2.55000711185704, 2.71995985605891, 2.61971498736444, 3.05976391058032, -5.97173564860957, -3.37912051983482, -5.14324860374941, -3.36396780694965, -6.02337246348561, -3.03754644968859, -5.51267338700737, -3.01148582224673, 2.69665543753264, 2.59359057553995, 2.7938341786374, 2.70689750644755, -0.362056555418564, 0.24088005091276, 0.124070380635372, -0.246152029808377, -0.0445628476462479, -0.911485513197845, -0.27911988106887, -0.359648419277058, -0.242711959678559, -6.84897302527358) # the test data we will use test_dat <- data.frame( country = factor(c("Norway", "Norway"), levels(prt_use$country)), status = c(1L, 2L), time = c(60, 75)) # probability that both experience the event prior to the two times mmcif_pd_bivariate( par = par, object = mmcif_obj, newdata = test_dat, cause = status, strata = country, ghq_data = ghq_data, time = time, type = c("cumulative", "cumulative")) |> print() # density that one experiences an event at the point and the other # experiences an event prior to the point mmcif_pd_bivariate( par = par, object = mmcif_obj, newdata = test_dat, cause = status, strata = country, ghq_data = ghq_data, time = time, type = c("derivative", "cumulative")) |> print() # probability that both survive up to the passed points mmcif_pd_bivariate( par = par, object = mmcif_obj, newdata = test_dat, cause = c(3L, 3L), strata = country, ghq_data = ghq_data, time = time, type = c("cumulative", "cumulative")) |> print() # conditional hazard given that the other experiences an event prior to time mmcif_pd_cond( par = par, object = mmcif_obj, newdata = test_dat, cause = status, strata = country, ghq_data = ghq_data, time = time, which_cond = 1L, type_cond = "cumulative", type_obs = "hazard") |> print() # conditional CIF given that the other experiences an event prior to the # time mmcif_pd_cond( par = par, object = mmcif_obj, newdata = test_dat, cause = c(2L, 2L), strata = country, ghq_data = ghq_data, time = time, which_cond = 1L, type_cond = "cumulative", type_obs = "cumulative") |> print() # same but given that the other experiences the event at the point mmcif_pd_cond( par = par, object = mmcif_obj, newdata = test_dat, cause = c(2L, 2L), strata = country, ghq_data = ghq_data, time = time, which_cond = 1L, type_cond = "derivative", type_obs = "cumulative") |> print() }
Computes the marginal cumulative incidence functions (CIF), marginal survival function or the derivative of the CIF.
mmcif_pd_univariate( par, object, newdata, cause, time, left_trunc = NULL, ghq_data = object$ghq_data, strata = NULL, use_log = FALSE, type = "cumulative" )
mmcif_pd_univariate( par, object, newdata, cause, time, left_trunc = NULL, ghq_data = object$ghq_data, strata = NULL, use_log = FALSE, type = "cumulative" )
par |
numeric vector with the model parameters. |
object |
an object from |
newdata |
a |
cause |
an integer vector with the cause of each outcome. If there are
|
time |
a numeric vector with the observed times. |
left_trunc |
numeric vector with left-truncation times. |
ghq_data |
the Gauss-Hermite quadrature nodes and weights to
use. It should be a list with two elements called |
strata |
an integer vector or a factor vector with the strata of each
individual. |
use_log |
a logical for whether the returned output should be on the log scale. |
type |
a character for the type of measures for the observation. It
can have value
|
A numeric scalar with the requested quantity.
mmcif_pd_bivariate
and mmcif_pd_cond
.
if(require(mets)){ data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # Gauss Hermite quadrature nodes and weights from fastGHQuad::gaussHermiteData ghq_data <- list( node = c(-3.43615911883774, -2.53273167423279, -1.75668364929988, -1.03661082978951, -0.342901327223705, 0.342901327223705, 1.03661082978951, 1.75668364929988, 2.53273167423279, 3.43615911883774), weight = c(7.6404328552326e-06, 0.00134364574678124, 0.0338743944554811, 0.240138611082314, 0.610862633735326,0.610862633735326, 0.240138611082315, 0.033874394455481, 0.00134364574678124, 7.64043285523265e-06)) # setup the object for the computation mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country, ghq_data = ghq_data) # previous estimates par <- c(0.727279974859164, 0.640534073288067, 0.429437766165371, 0.434367104339573, -2.4737847536253, -1.49576564624673, -1.89966050143904, -1.58881346649412, -5.5431198001029, -3.5328359024178, -5.82305147022587, -3.4531896212114, -5.29132887832377, -3.36106297109548, -6.03690322125729, -3.49516746825624, 2.55000711185704, 2.71995985605891, 2.61971498736444, 3.05976391058032, -5.97173564860957, -3.37912051983482, -5.14324860374941, -3.36396780694965, -6.02337246348561, -3.03754644968859, -5.51267338700737, -3.01148582224673, 2.69665543753264, 2.59359057553995, 2.7938341786374, 2.70689750644755, -0.362056555418564, 0.24088005091276, 0.124070380635372, -0.246152029808377, -0.0445628476462479, -0.911485513197845, -0.27911988106887, -0.359648419277058, -0.242711959678559, -6.84897302527358) # the test data we will use test_dat <- data.frame(country = factor("Norway", levels(prt_use$country)), status = 2L) # compute the CIF mmcif_pd_univariate( par = par, object = mmcif_obj, newdata = test_dat, cause = status, strata = country, ghq_data = ghq_data, time = 75, type = "cumulative") |> print() # compute the derivative of the CIF mmcif_pd_univariate( par = par, object = mmcif_obj, newdata = test_dat, cause = status, strata = country, ghq_data = ghq_data, time = 75, type = "derivative") |> print() # compute the survival probability mmcif_pd_univariate( par = par, object = mmcif_obj, newdata = test_dat, cause = 3L, strata = country, ghq_data = ghq_data, time = 75, type = "cumulative") |> print() }
if(require(mets)){ data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # Gauss Hermite quadrature nodes and weights from fastGHQuad::gaussHermiteData ghq_data <- list( node = c(-3.43615911883774, -2.53273167423279, -1.75668364929988, -1.03661082978951, -0.342901327223705, 0.342901327223705, 1.03661082978951, 1.75668364929988, 2.53273167423279, 3.43615911883774), weight = c(7.6404328552326e-06, 0.00134364574678124, 0.0338743944554811, 0.240138611082314, 0.610862633735326,0.610862633735326, 0.240138611082315, 0.033874394455481, 0.00134364574678124, 7.64043285523265e-06)) # setup the object for the computation mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country, ghq_data = ghq_data) # previous estimates par <- c(0.727279974859164, 0.640534073288067, 0.429437766165371, 0.434367104339573, -2.4737847536253, -1.49576564624673, -1.89966050143904, -1.58881346649412, -5.5431198001029, -3.5328359024178, -5.82305147022587, -3.4531896212114, -5.29132887832377, -3.36106297109548, -6.03690322125729, -3.49516746825624, 2.55000711185704, 2.71995985605891, 2.61971498736444, 3.05976391058032, -5.97173564860957, -3.37912051983482, -5.14324860374941, -3.36396780694965, -6.02337246348561, -3.03754644968859, -5.51267338700737, -3.01148582224673, 2.69665543753264, 2.59359057553995, 2.7938341786374, 2.70689750644755, -0.362056555418564, 0.24088005091276, 0.124070380635372, -0.246152029808377, -0.0445628476462479, -0.911485513197845, -0.27911988106887, -0.359648419277058, -0.242711959678559, -6.84897302527358) # the test data we will use test_dat <- data.frame(country = factor("Norway", levels(prt_use$country)), status = 2L) # compute the CIF mmcif_pd_univariate( par = par, object = mmcif_obj, newdata = test_dat, cause = status, strata = country, ghq_data = ghq_data, time = 75, type = "cumulative") |> print() # compute the derivative of the CIF mmcif_pd_univariate( par = par, object = mmcif_obj, newdata = test_dat, cause = status, strata = country, ghq_data = ghq_data, time = 75, type = "derivative") |> print() # compute the survival probability mmcif_pd_univariate( par = par, object = mmcif_obj, newdata = test_dat, cause = 3L, strata = country, ghq_data = ghq_data, time = 75, type = "cumulative") |> print() }
Computes the sandwich estimator of the covariance matrix. The parameter that is passed is using the log Cholesky decomposition. The Hessian is computed using numerical differentiation with Richardson extrapolation to refine the estimate.
mmcif_sandwich( object, par, ghq_data = object$ghq_data, n_threads = 1L, eps = 0.01, scale = 2, tol = 1e-08, order = 3L )
mmcif_sandwich( object, par, ghq_data = object$ghq_data, n_threads = 1L, eps = 0.01, scale = 2, tol = 1e-08, order = 3L )
object |
an object from |
par |
numeric vector with the parameters to compute the sandwich estimator at. |
ghq_data |
the Gauss-Hermite quadrature nodes and weights to
use. It should be a list with two elements called |
n_threads |
the number of threads to use. |
eps |
determines the step size in the numerical differentiation using
|
scale |
scaling factor in the Richardson extrapolation. Each step is
smaller by a factor |
tol |
relative convergence criteria in the extrapolation given
by |
order |
maximum number of iteration of the Richardson extrapolation. |
The sandwich estimator along attributes called
"meat"
for the "meat" of the sandwich estimator.
"hessian"
for the Hessian of the log composite likelihood.
"res vcov"
which is the sandwich estimator where the
last elements are the upper triangle of the covariance matrix of the random
effects rather than the log Cholesky decomposition of the matrix.
Cederkvist, L., Holst, K. K., Andersen, K. K., & Scheike, T. H. (2019). Modeling the cumulative incidence function of multivariate competing risks data allowing for within-cluster dependence of risk and timing. Biostatistics, Apr 1, 20(2), 199-217.
mmcif_fit
and mmcif_data
.
if(require(mets)){ # prepare the data data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # randomly sub-sample set.seed(1) prt_use <- subset( prt_use, id %in% sample(unique(id), length(unique(id)) %/% 10L)) n_threads <- 2L mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country) # get the staring values start_vals <- mmcif_start_values(mmcif_obj, n_threads = n_threads) # estimate the parameters ests <- mmcif_fit(start_vals$upper, mmcif_obj, n_threads = n_threads) # get the sandwich estimator vcov_est <- mmcif_sandwich( mmcif_obj, ests$par, n_threads = n_threads, order = 2L) # show the parameter estimates along with the standard errors rbind(Estimate = ests$par, SE = sqrt(diag(vcov_est))) |> print() # show the upper triangle of the covariance matrix and the SEs rbind(`Estimate (vcov)` = tail(ests$par, 10) |> log_chol_inv() |> (\(x) x[upper.tri(x, TRUE)])() , SE = attr(vcov_est, "res vcov") |> diag() |> sqrt() |> tail(10)) |> print() }
if(require(mets)){ # prepare the data data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # randomly sub-sample set.seed(1) prt_use <- subset( prt_use, id %in% sample(unique(id), length(unique(id)) %/% 10L)) n_threads <- 2L mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country) # get the staring values start_vals <- mmcif_start_values(mmcif_obj, n_threads = n_threads) # estimate the parameters ests <- mmcif_fit(start_vals$upper, mmcif_obj, n_threads = n_threads) # get the sandwich estimator vcov_est <- mmcif_sandwich( mmcif_obj, ests$par, n_threads = n_threads, order = 2L) # show the parameter estimates along with the standard errors rbind(Estimate = ests$par, SE = sqrt(diag(vcov_est))) |> print() # show the upper triangle of the covariance matrix and the SEs rbind(`Estimate (vcov)` = tail(ests$par, 10) |> log_chol_inv() |> (\(x) x[upper.tri(x, TRUE)])() , SE = attr(vcov_est, "res vcov") |> diag() |> sqrt() |> tail(10)) |> print() }
Fast heuristic for finding starting values for the mixed cumulative incidence functions model.
mmcif_start_values(object, n_threads = 1L, vcov_start = NULL)
mmcif_start_values(object, n_threads = 1L, vcov_start = NULL)
object |
an object from |
n_threads |
the number of threads to use. |
vcov_start |
starting value for the covariance matrix of the random
effects. |
A list with
an element called "full"
with the starting value where the
last components are the covariance matrix.
an element called "upper"
the staring values where the
covariance matrix is stored as a log Cholesky decomposition. This is used
e.g. for optimization with mmcif_fit
.
if(require(mets)){ # prepare the data data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # randomly sub-sample set.seed(1) prt_use <- subset( prt_use, id %in% sample(unique(id), length(unique(id)) %/% 10L)) n_threads <- 2L mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country) # get the staring values start_vals <- mmcif_start_values(mmcif_obj, n_threads = n_threads) # the starting values print(start_vals) }
if(require(mets)){ # prepare the data data(prt) # truncate the time max_time <- 90 prt <- within(prt, { status[time >= max_time] <- 0 time <- pmin(time, max_time) }) # select the DZ twins and re-code the status prt_use <- subset(prt, zyg == "DZ") |> transform(status = ifelse(status == 0, 3L, status)) # randomly sub-sample set.seed(1) prt_use <- subset( prt_use, id %in% sample(unique(id), length(unique(id)) %/% 10L)) n_threads <- 2L mmcif_obj <- mmcif_data( ~ country - 1, prt_use, status, time, id, max_time, 2L, strata = country) # get the staring values start_vals <- mmcif_start_values(mmcif_obj, n_threads = n_threads) # the starting values print(start_vals) }